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Obsessive compulsive disorder (OCD) is a prevalent psychiatric disorder characterized by
obsessions and compulsions. Studies investigating symptomatology and cognitive
deficits in OCD frequently implicate the striatum. The aim of this study was to explore
striatum-mediated cognitive deficits in patients with OCD as they complete a stimulus-
response learning task previously shown to differentially rely on the dorsal (DS) and ventral
striatum (VS). We hypothesized that patients with OCD will show both impaired decision-
making and learning, coupled with reduced task-relevant activity in DS and VS,
respectively, compared to healthy controls. We found that patients with OCD (n = 14)
exhibited decision-making deficits and learned associations slower compared to healthy
age-matched controls (n = 16). Along with these behavioral deficits, OCD patients had
reduced task-relevant activity in DS and VS, compared to controls. This study reveals that
responses in DS and VS are altered in OCD, and sheds light on the cognitive deficits and
symptoms experienced by patients with OCD.

Keywords: obsessive compulsive disorder, neuroimaging, striatum, learning, decision-making
INTRODUCTION

Obsessive compulsive disorder (OCD) is a psychiatric illness prevalent in 1%–2% of adults and is
described by the National Institute of Mental Health as typically chronic with a gradual onset (1, 2).
OCD is characterized by two major symptoms: obsessions and compulsions (1, 2). The former are
defined as disturbing and intrusive thoughts, urges, or impulses, and the latter as recurring
behaviors or mental acts that patients feel driven to perform (1). Patients with OCD exhibit a
diverse array of obsessions and compulsions that range in severity. The symptoms tend to follow a
general order, however. Obsessive thoughts arise producing anxiety. In response to obsessions,
compulsions are performed providing temporary anxiety reduction until the intrusive, obsessive
thoughts occur again, beginning the cycle anew (1, 2). Obsessions and compulsions are usually
thematically linked. For example, patients might fear contamination by dirt or germs, with
accompanying trepidation that this could result in serious illness or death to self or others, out
of proportion with actual risk (3, 4). The anxiety drives patients to wash or clean excessively,
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repetitively, or in a ritualistic fashion, which for a time reduces
distress. Compulsive washing usually only ends once a feeling of
cleanliness is achieved through completion of the ritual or after
exaggerated washing, rather than following appropriate
cleansing and elimination of observable dirt. The feeling of
cleanliness is generally fleeting, however, and despite efforts to
avoid contamination, actual or perceived exposure to
contaminants inevitably recurs and the cycle repeats. Patients
with OCD spend substantial amounts of time preoccupied with
obsessions and performing compulsions, interfering with
employment, goals, and relationships (5). The neural bases of
obsessions and compulsions are not fully elucidated.

The striatum, the input region of the basal ganglia, is now
extensively implicated in motor and cognitive functions (6, 7).
Striatal abnormalities are noted in movement disorders and
increasingly in psychiatric illnesses (8–10). The striatum can be
divided into at least two sub-regions, the dorsal (DS) and ventral
striatum (VS), based on independent dopaminergic and
glutamatergic inputs, vascular supplies, and functions (11–13).
DS encompasses the majority of the caudate nucleus and
putamen. The DS has been implicated in decision-making (14),
cognitive flexibility (15), and inhibition of habitual responses
(16). In contrast, the VS is comprised of the nucleus accumbens
and ventral regions of the caudate nucleus and putamen (10).
The VS has been shown to underlie motivation and reward
processing, as well as learning associations among stimuli,
responses, and rewards (14, 17–20).

Recently, OCD has been linked to deficits in the striatum
using evidence from structural and functional magnetic
resonance imaging (MRI). Structural MRI studies utilizing
voxel-based morphometry have consistently found volumetric
differences within the striatum with the consensus being
reduced volume of DS (21, 22) and increased volume of VS
(21, 23–27). Additionally, volumetric differences have been
found in regions reciprocally connected to the striatum, such
as the hippocampus, palladium, and thalamus (28, 29). The
volumetric abnormalities in OCD are also reflected in resting
state basal activity and activity related to cognitive tasks.
Positron Emission Tomography (PET) and resting fMRI have
found increased glucose metabolism and increased activity in
regions of VS compared to controls (30–36). Interestingly, it
appears that reversal learning (37) and reward learning (38),
cognitive functions mediated by VS, are diminished in OCD
patients, coupled with decreased VS activity compared to
healthy controls. Conversely, resting state and DS-mediated
task activity in DS is reduced compared to controls (32, 39,
40). The task-related DS hypoactivation extends to behavior, as
well. Patients with OCD have shown diminished cognitive
flexibility and decision-making as evidenced by increased
reaction times (RTs) compared to healthy controls (41, 42).
The increase in RT may be the result of failure to use the learned
information effectively and to refine the responses across
subsequent repetitions of the stimuli. Taking everything
together, OCD patients seem to have increased volume and
baseline activity but decreased task-related activity in VS, and
diminished volume and activity in DS.
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We have shown that separating trials in a stimulus-response
learning paradigm into decision versus learning phases
differently engages DS and VS (14, 19, 43). In stimulus-
response learning experiments, in each trial a) a stimulus is
presented, a response is selected and performed, and b) feedback
regarding the accuracy of the response is provided. Response
selection and enactment reflect decision-making operations,
which engage DS (14, 44, 45). As has been shown previously,
decision-making performance improves as participants become
more familiar with the stimuli and responses and this is
evidenced by improved decision accuracy and reduced
response time (RT) across trials (14, 46, 47). Feedback
processing is the means through which stimulus-response
associations are learned, and this phase correlates with VS
activation using neuroimaging (17, 37, 48–50). Learning is
examined with changes in accuracy across the learning blocks
with more errors early on and diminishing as participants use the
feedback provided to update their responses.

Using this stimulus-response association task coupled with
fMRI, we specifically investigated DS and VS-mediated cognitive
functions in OCD. Patients with OCD evidence difficulty
inhibiting habitual responses as well as aberrant stimulus-
response association learning (8, 32). We predicted that both
DS and VS functions would be impaired in OCD. Behaviorally,
we anticipated diminished decision-making performance
evidenced by an impaired or diminished reduction in RT
across blocks, coupled with reduced DS activity compared to
healthy controls. Similarly, we expected a slower rate of change
in performance accuracy across blocks and reduced VS activity
compared to controls.
MATERIALS AND METHODS

Participants
Fourteen patients with OCD and 16 healthy control participants
completed the experiment. All patients with OCD were previously
diagnosed by a licensed psychiatrist. Past and current medical
histories of patients were reviewed during a telephone screening
as well as in person, immediately prior to performing the
experimental task. All patients in this study were diagnosed with
OCD and followed for this condition by a psychiatrist. Consent was
obtained to contact the treating psychiatrist to confirm the diagnosis
of OCD and the absence of other psychiatric or known neurological
conditions. All participants had no confounding, diagnosed
neurological, or psychiatric disorders. Patients abusing alcohol,
prescription or street drugs, or taking cognitive-enhancing
medications like donepezil, galantamine, rivastigmine, memantine,
or methylphenidate were excluded from participating.

Mean group demographics and clinical information for all
patients and controls were recorded (Table 1). The Yale-Brown
Obsessive-Compulsive Scale (YBOCS) was administered to
patients with OCD to quantify the presence and severity of
obsessive and compulsive symptoms. The YBOCS yields a total
OCD severity score, as well as obsession and compulsion sub-
scores (Table 1).
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All participants provided informed written consent to the
protocol before beginning the experiment according to the
Declaration of Helsinki. This study was approved by the Health
Sciences Research Ethics Board (REB #18517) of the University of
Western Ontario.
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Experimental Design
Each participant completed a stimulus-response task in which
they learned to associate 12 abstract images with one of three
button-press responses. These images, shown in Figure 1, were
computer-generated with GroBoto (Braid Art Labs, Colorado
Springs, USA). The task was administered within a 3 Tesla (T)
fMRI scanner to observe concurrent regional activity within
the striatum.

Figure 2 demonstrates an example of an experimental trial.
Each trial consisted of an abstract image being presented in the
centre of a projection screen until a response was selected. The
participant chose one of the three button-press options.
Deterministic feedback regarding accuracy of the response (i.e.,
“Correct” or “Incorrect”) was presented. This provided the basis
for learning the stimulus-response associations between each
abstract image and the corresponding button-press response.

Trials were organized into five blocks. Each block was
comprised of 24 trials—with each abstract image randomly
appearing twice within each block. After each block, a
percentage score of the number of correct responses was
displayed—indicating performance for the block.

There were four buttons on the button box. The second, third,
and fourth buttons each corresponded to two of the twelve abstract
images. Participants pressed these three buttons with their index,
middle, and ring fingers, respectively. The first button, pressed by
the thumb, served to advance from the feedback phase to the next
FIGURE 1 | Abstract images presented in the experiment. Images were associated with a button pressed by the index, middle, or ring finger buttons. Modified from
NeuroImage, 185, Nole M. Hiebert, Adrian M. Owen, Hooman Ganjavi, Daniel Mendonça, Mary E. Jenkins, Ken N. Seergobin, Penny A. MacDonald, Dorsal striatum
does not mediate feedback-based, stimulus-response learning: An event-related fMRI study in patients with Parkinson's disease tested on and off dopaminergic
therapy, 455–470, Copyright (2019), with permission from Elsevier.
TABLE 1 | Demographic and clinical characteristics for participants in the OCD
and control groups.

OCD Control p value

Number of participants 14 16 –

Age 26.07 (1.65) 24.50 (0.68) 0.39
Education level 16.92 (0.65) 17.54 (0.45) 0.48
YBOCS–Total Score 18.00 (1.59) – –

YBOCS–Obsession sub-score 9.71 (0.85) – –

YBOCS–Compulsion sub-score 8.29 (1.08) – –

BDI-II 11.64 (2.54) 4.00 (0.95) 0.01*
BAI 9.14 (1.44) 3.00 (0.89) 0.002*
SAS 9.86 (1.25) 8.91 (0.96) 0.58
ANART 121.67 (1.85) 120.88 (1.45) 0.76
Epworth Sleepiness Scale 8.21 (1.30) 5.54 (0.67) 0.10
Oxford Happiness score 3.79 (0.17) 5.08 (0.14) 0.00002*
BIS-11 58.36 (2.64) 56.54 (3.75) 0.73
MoCA 27.86 (0.49) 28.82 (0.40) 0.17
Values are presented as group means and standard error of the mean (SEM) in braces.
ANART, National Adult Reading Test IQ Estimation; MOCA, Montreal Cognitive Assess-
ment total score out of 30; BDI-II, Beck Depression Inventory II; BAI, Beck Anxiety
Inventory; BIS-11, Barratt Impulsiveness Scale; SAS, Starkstein Apathy Scale; YBOCS,
Yale-Brown Obsessive Compulsive Scale. *indicates statistical significance (p < 0.05).
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trial. In this way, a motor response was included in both decision-
making and feedback phases of each trial.

Trials proceeded as follows: (i) a cross appeared in the center
of the projection screen for 500 ms; (ii) a blank screen occurred
for 500 ms; (iii) an abstract image was presented until a button-
press response was made; (iv) a blank screen appeared for a
variable period of time (mean: 2,500 ms; minimum: 525 ms;
maximum: 7,000 ms); (v) feedback (i.e., “Correct” or “Incorrect”)
appeared for 1,000 ms; (vi) a blank screen appeared until the
participant pressed the first button with his/her thumb to proceed
to the next trial; (vii) a blank screen appeared for a variable period of
time (mean: 2,500 ms; minimum: 525 ms; maximum: 7,000 ms).

The inter-stimulus interval (ISI), the period between the
response selection and feedback, and the inter-trial interval
(ITI), the duration between the offset of feedback and the onset
of the following trial, were jittered. These intervals varied in
duration, and the length of both the ISI and ITI was sampled
from an exponential distribution (mean: 2,500 ms; minimum:
525 ms; maximum: 7,000 ms) on each trial.

The variable rest intervals served to distinguish two
independent events within each trial: a) the Stimulus-Response
Decision Event and b) the Feedback Event (Figure 2). As
Frontiers in Psychiatry | www.frontiersin.org 4
previously discussed, in the Stimulus-Response Decision Event,
an abstract image is presented until a button-press response is
performed. The Feedback or Learning Event consisted of the
period during which feedback was provided up until the
participant indicated their willingness to advance to the next
trial with a button-press response.

BEHAVIORAL DATA ANALYSIS

Measure of Decision-Making
In each of the five blocks, each stimulus was presented twice.
During the first few blocks of the session (i.e., Blocks 1–3),
participants are actively learning the stimulus-response
associations. Responses are quite error-prone as participants
are acquiring these relations through trial and error, and
response times (RTs) are highly variable. Towards the end of
the Session, when much of the learning has already taken place
(i.e., Blocks 4–5), the time to respond with the correct button-
press decreases. RTs during the final block reflect deliberation,
and therefore measure the efficiency of decision-making
processes (14). Comparing RTs for accurately-performed
responses to the first presentation of each stimulus in the final
FIGURE 2 | Example of a single trial in the experiment. Participants learned to associate 12 abstract images with one of three button-press responses. The following
is an example of a trial: (i) a cross appeared in the center of the projection screen for 500 ms; (ii) a blank screen occurred for 500 ms; (iii) an abstract image was
presented in the center of the projection screen until a button-press response; (iv) a blank screen appeared for a variable period of time sampled from an exponential
distribution (mean: 2,500 ms; minimum: 525 ms; maximum: 7,000 ms); (v) feedback (i.e., “Correct” or “Incorrect”) appeared for 1,000 ms; (vi) a blank screen
appeared for a variable period of time sampled from an exponential distribution (mean: 2,500 ms; minimum: 525 ms; maximum: 7,000 ms). Modified from
NeuroImage, 185, Nole M. Hiebert, Adrian M. Owen, Hooman Ganjavi, Daniel Mendonça, Mary E. Jenkins, Ken N. Seergobin, Penny A. MacDonald, Dorsal striatum
does not mediate feedback-based, stimulus-response learning: An event-related fMRI study in patients with Parkinson's disease tested on and off dopaminergic
therapy, 455–470, Copyright (2019), with permission from Elsevier. *The inter-stimulus and inter-trial intervals (ISI and ITI, respectively) were jittered between the
response and feedback and between the offset of feedback and the beginning of the subsequent trial to create two fMRI events within each trial: a) the Stimulus-
Response Decision Event and b) the Feedback Event.
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block of the Session (i.e., Block 5), with RTs for accurately-
performed responses to the second presentation of each stimulus
in the penultimate block of the Session (i.e., Block 4), provided
our measure of stimulus-response decision-making. No new
feedback-based learning occurs from correctly-performed
responses for second presentation of stimuli in Block 4 to
correctly-performed responses for the first presentation of these
stimuli in Block 5, emphasizing decision-making processes. Further,
weighting by RT in Block 4 accounted for individual differences in
participant RTs. Consequently, Final Block RT Change Scores,
calculated as RT for accurate responses to first presentation of
stimuli in Block 5 minus RT for accurate responses to second
presentation of stimuli in Block 4, was our measure of decision-
making efficiency. Independent t-tests were conducted on Final Block
RT Change Scores between OCD patients and healthy controls.

Measure of Stimulus-Response
Association Learning
The rate of change, or slope, of response accuracy (%) recorded
after each block across the five blocks of the session was used to
operationalize the rate at which participants learned the
stimulus-response associations. Block 0 was included in the
calculation with a value of zero, as participants are assumed to
have no prior learned association between the abstract images
and the correct button-press responses at the outset. The
equation used to calculate Learning Slope was the standard
slope of the linear regression function (Microsoft Excel, 2011):

b =
∑ x − �xð Þ y − �yð Þ

∑ x − �xð Þ2

where b is the slope, and x and y are the sample means of the
number of blocks and block scores, respectively. Statistical
analysis involved conducting an independent, unpaired t-test
on Slope of Learning scores between OCD patients and
healthy controls.

Imaging Acquisition
FMRI data were collected in a 3T Siemens Magnetom Prisma with
Total Imaging Matrix MRI at Robarts Research Institute at the
University ofWestern Ontario. A scout image was taken to properly
orient the participant and T1 for anatomical localization. Five runs
of T2*-weighted functional acquisitions were completed, each
consisting of one block with 24 trials. Each run lasted
approximately 5 min. A whole brain image was taken every 2.5 s,
each consisting of 43, 2.5 mm-thick slices. The field of view was
oriented along the anterior and posterior commissure of the brain
with a matrix of 88 × 88 pixels. Each isotropic voxel size was 2.5 ×
2.5 × 2.5 mm3. The echo time was 30 ms and the flip angle was 90˚.

FMRI DATA ANALYSIS

Statistical Parametric Mapping version 12 (SPM12; Wellcome
Department of Imaging Neuroscience, London, United
Kingdom) was used in conjunction with Matrix Laboratory
(MATLAB, Mathworks, Inc., Natick, Massachusetts, United
States) to complete fMRI analysis. The scans were slice-time
Frontiers in Psychiatry | www.frontiersin.org 5
corrected, reoriented for participant motion, spatially
normalized to the standard Montreal Neurological Institute
(MNI) template, smoothed with an 8-mm full-width, half
maximum Gaussian kernel, and high-pass filtered (0.0056 Hz).

Fixed-effect analyses in SPM12 were used to model each
participant's data. Regressors were generated by convolving
onsets and durations of Stimulus-Response Decision, Feedback,
and ITI Rest Events with the canonical hemodynamic response
function. The Stimulus-Response Decision Event was
demarcated as the time between onset of abstract image
presentation and button-press response. The Feedback Event
comprised the time of feedback presentation, lasting 1,000 ms
and then until the participant pressed the thumb button to
proceed to the next trial. As a result, motor responses occurred
in both Stimulus-Response Decision and Feedback Events. To
reiterate, the ITI Rest Event includes the variable period of time
sampled from an exponential distribution (mean: 2,500 ms;
minimum: 525 ms; maximum: 7,000 ms) after the post-feedback
button-press until the beginning of the next trial. While it is termed
rest, it is important to note that is it not a true rest period in that the
participant may be completing other cognitive processes such as
processing the previous reward, rehearsing stimulus-response
associations, and anticipating future rewards. Nevertheless, the use
of this period as a baseline with which to compare task-relevant
events has been used previously (19, 43, 50). A general linear model
(GLM) was created and included the regressors for the Stimulus-
Response Decision, Feedback, and ITI Rest Events. The GLM
examined regional blood-oxygenation-level dependent (BOLD)
activity associated with these events.

The Harvard-Oxford Subcortical Atlas in the FMRIB Software
Library version 5.0 (FSL v5.0; Analysis Group, FMRIB, Oxford,
United Kingdom) was used to define striatal regions. MNI space
was used as an x, y, and z coordinate system to delineate each
region. The VS was defined as z < 2 in MNI space, including the
nucleus accumbens and the ventral portion of the caudate nucleus
and putamen (51). The DS was defined as z ≥ 2 in MNI space,
consisting of the bulk of the caudate nucleus and putamen (51).

Replication Contrasts
First, group-level contrasts examined brain activity correlating
with Stimulus-Response Decision and Feedback Events,
collapsed across Group (OCD and control) to confirm that we
replicated the results from our previous studies (14, 19, 43)
as follows:

(i) Stimulus-Response Decision versus Feedback Events
collapsed across Group (OCD and control)

Peaks in these contrasts had an extent threshold of at least 10
contiguous voxels and are reported at a significance level of p <
0.05 corrected for multiple comparisons using familywise error
correction (FWE) at the voxel level.

OCD VERSUS CONTROL CONTRASTS

Subsequently, events of interest were contrasted between Group
(OCD versus control). The contrasts of interest were:
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(i) OCD versus control for Stimulus-Response Decision Events
(ii) OCD versus control for Feedback Events

For these contrasts between OCD patients and controls, peaks
had an extent threshold of at least 10 contiguous voxels and are
reported at a significance level of p < 0.05 FWE corrected for
multiple comparisons at the voxel level.

Correlation Analysis
Next, we investigated brain-behavior correlations to confirm that
behavioral performance was related to DS and/or VS activity
patterns. We tested whether BOLD signal in striatal regions
correlated with behavioral indices of response selection decisions
and learning respectively. Specifically, we tested whether activity
in DS and VS ROIs were correlated with our measure of
decision-making, Final Block RT Change, and our measure of
learning efficiency, Learning Slope. Correlations were performed
separately for OCD and healthy control groups in the event that
response selection performance and learning performance
differed across groups. A right and left DS ROI and a right and
left VS ROI were created, encompassing the entire DS and VS,
respectively, using the MarsBar Toolbox in SPM12 (52). Beta
values in our ROIs were extracted from two contrasts of interest
described below.

(i) Stimulus-Response Decision Events minus Rest
(ii) Feedback Events minus Rest

The beta values for each ROI were correlated with behavioral
measures of stimulus-specific response selection (i.e., the Final
Block RT Change) and learning (i.e., Learning Slope) relative to
rest for each group separately.

Additionally, Bayesian analysis was performed on the brain-
behavior correlations to investigate the strength of negative
results. Briefly, the application of Bayesian analysis reduces
pitfalls in dealing with negative results and interpreting null
effects. Bayesian analysis treats null and alternative hypotheses
symmetrically, using the data themselves to determine the
relative fit to the respective models. In this way, the statistical
obstacles and validity of accepting versus rejecting the null
hypotheses are equated with Bayesian analysis (53). If the
Bayes' factor of the average beta values is <3, it strongly
supports the null hypothesis, that there is no significant
correlation (53).
RESULTS

Demographic and Clinical Characteristics
of OCD Patients and Healthy Controls
Demographic and clinical characteristics of each group are
presented in Table 1. The mean [standard error about the
mean (SEM)] ages of the patient and control groups were
26.07 (1.65) and 24.50 (0.68), respectively. The mean years of
education (SEM) of the patient and control groups were 16.93
(0.66) and 17.55 (0.45), respectively. There were no significant
differences between OCD and control participants (see Table 1)
Frontiers in Psychiatry | www.frontiersin.org 6
in demographic or cognitive data. Participants with OCD scored
significantly higher on Beck Depression Inventory II, Beck
Anxiety Inventory, and significantly lower Oxford Happiness
Questionnaire compared to controls, as would be expected given
the nature of OCD. Out of the 14 patients with OCD, 6 patients
were on a stable dose of a selective-serotonin reuptake inhibitor
(SSRI), one patient was on a stable dose of a benzodiazepine, and
7 were on no medication for their OCD. YBOCS was
administered to OCD patients only. Again, the YBOCS
measures the presence and severity of obsessive and
compulsive symptoms. The scale yields a total score as well as
a sub-score for obsessions and compulsions, although only the
total score is interpreted clinically. The current OCD cohort had
a mean total score of 18 which suggests moderately severe OCD
(54). YBOCS total scores ranged from 8 (mild OCD) to 26
(severe OCD), suggesting a wide range OCD severity in our
study (54–56).

Behavioral Data
Behavioral measures of decision-making and feedback-based
learning are presented in Table 2.

Measure of Decision-Making
Final Block RT Change Scores, calculated as RT for accurate
responses to the first presentation of each stimulus in Block 5
minus RT for accurate responses to the second presentation of
each stimulus in Block 4, was our measure of decision-making
efficiency. By end of Block 4 and throughout Block 5, stimulus-
response associations are expected to be well learned. In fact, no
new feedback-based learning occurs from correctly performed
responses for second presentation of stimuli in Block 4 to
correctly performed responses for the first presentation of
these stimuli in Block 5. These Final Block RT Change Scores,
therefore, emphasize decision-making processes isolated from
learning processes. Further, weighting by RT in Block 4 accounts
for individual differences in participant RTs. We found
significantly less improvement from Block 4 to Block 5 in
terms of the Final Block RT Change Score for OCD patients
compared to controls (t = 1.90, p = 0.033; Figure 3A). In fact, the
score was positive for OCD patients, meaning that they slowed
down in Block 5 relative to Block 4, whereas controls
demonstrated the expected reduction of RT, reflecting more
efficient decision-making, requiring less deliberation by Block
TABLE 2 | Behavioral measures for patients with OCD and control participants.

Final Block
Accuracy (%)

Final Block
Mean RT (ms)

Final Block RT
Change (ms)

Slope of
Learning

OCD 76.20
(5.74)

1316.72 (138.10) 153.74
(91.87)

0.085
(0.015)

Control 84.72
(3.72)

1251.05 (97.84) −190.06
(123.16)

0.132
(0.016)
Februa
ry 2020 | Volume 11
Values are presented as group means and SEM in braces. Final Block RT Change is a
difference score between the mean RT of the first presentation of each of the stimuli that
were associated with correct responses of Block 5 and the mean RT of the second
presentation of each of the stimuli that were associated with correct responses of Block 4.
Slope of Learning was calculated using the slope of the linear regression function in
Microsoft Excel (2011).
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5. It is important to note, however, that mean RT and accuracy in
the final block did not differ significantly between OCD patients
and controls (Final Block Mean RT: t = 0.53, p = 0.701; Final
Block Mean Accuracy: t = 0.76, p = 0.226).

Measure of Stimulus-Response
Association Learning
Efficiency of stimulus-response association learning was
estimated using the Slope of Learning defined as the rate of
change of response accuracy over five blocks of stimulus-
response trials. Slope was calculated using the slope of the
linear regression function in Microsoft Excel (2011). An
independent sample t-test on Slope of Learning scores was
conducted between OCD and control participants. We found
significantly slower learning, with shallower slope, in patients
with OCD compared to control participants (t = 2.53, p = 0.008;
Figure 3B). When accuracy scores were broken down by block
and between group differences were examined, no significant
differences arose across any individual block (Figure 3C).

FMRI Data
Significant activations in contrasts of interest are presented in
Tables 3, 4, and Figures 4, 5. Contrasts are reported at a
significance level of p < 0.05 FWE, unless otherwise indicated.

Replication Contrasts
Significant activations in these contrasts of interest are found in
Table 3.

Stimulus-Response Decision versus Feedback
Events
Significant activity arose in the DS, specifically in the left dorsal
putamen in the Stimulus-Response Decision minus Feedback
Events contrast (peak coordinates: −24, −1, 8; t = 4.90, p = 0.004
FWE). In the Feedback minus Stimulus-Response Decision
Events contrast, activity trended towards being significant in
Frontiers in Psychiatry | www.frontiersin.org 7
the right ventral caudate of the VS (peak coordinates: 9, 5, −2; t =
4.15, p = 0.079 FWE).

OCD Versus Control Contrasts
Significant activations in these contrasts of interest are found in
Table 4.

Stimulus-Response Decision Events: Control Minus
OCD
There was greater activity in the right dorsal caudate nucleus of
the DS (peak coordinates: 15, 2, 14; t = 5.32, p = 0.001 FWE;
Figure 4A) in healthy controls compared to patients with OCD
when examining Stimulus-Response Decision Events.

Stimulus-Response Decision Events: OCD Minus
Control
No activity occurred in the striatum at p < 0.05 FWE, or even at
the liberal threshold of p < 0.001 uncorrected when OCD
Stimulus-Response Decision Events were contrasted with
control events (Figure 4B).

Feedback Events: Control Minus OCD
There was greater activity in bilateral ventral putamina of the VS
(peak coordinates: 30, 5, −1; t = 5.61, p < 0.001 FWE, and peak
coordinates: −27, 2, −1; t = 5.05, p = 0.004 FWE), as well as left
dorsal putamen (peak coordinates: −27, −1, 11; t = 5.67, p < 0.001
FWE) in healthy controls compared to patients with OCD when
examining Feedback Events (Figure 4C).

Feedback Events: OCD Minus Control
No activity occurred in the striatum at p < 0.05 FWE, or even at
the liberal threshold of p < 0.001 uncorrected in the OCD minus
control Feedback Events contrast (Figure 4D).

Brain-Behavior Correlations: OCD and
Controls Separately
One right and one left ROI encompassing the entirety of the DS,
and one right and one left ROI encompassing the entirety of the
FIGURE 3 | Behavioral Data in Patients with OCD and Healthy Controls. (A) Final Block RT Change was our measure of decision-making efficiency. It was
calculated by subtracting the mean RT for correct events of the first presentation of the stimuli in Block 5 from the mean RT for correct events of the second
presentation of the stimuli in Block 4. We found significantly less reduction in Block 5 RT relative to Block 4 RT for OCD patients compared to controls (t = 1.90,
p = 0.033). (B) Slope of Learning served as a measurement of learning efficiency. To reiterate, Slope of Learning was calculated using the block accuracy scores
over five blocks using the slope of the linear regression function (Microsoft Excel, 2011). Slope of Learning was significantly slower in OCD patients compared to
healthy controls (t = 2.53, p = 0.008). (C) Mean accuracy plotted across blocks for patients with OCD and healthy controls. No significant differences arose between
groups across blocks 1–5. Error bars represent SEM. *p < 0.05.
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VS were created for the brain-behavior correlations. Beta values
for each of the four ROIs were extracted from Stimulus-Response
Decision Events minus Rest and Feedback Events minus Rest
across all five blocks. These were correlated with Final Block RT
Change and Slope of Learning in controls and OCD
patients separately.

Striatum and Decision-Making Efficiency
Final Block RT Change scores, our measure of decision-making
efficiency, were correlated with beta values from each of the two
DS and VS ROIs, separately for healthy controls and OCD
patients. For control participants, a significant and negative
correlation occurred between Final Block RT Change Score
Frontiers in Psychiatry | www.frontiersin.org 8
and beta values in the left DS ROI during Stimulus-response
Decision Events minus Rest (r = −0.552, t = 1.99, p = 0.033,
uncorrected for multiple comparisons; Figure 5A). This
suggested that those participants with greater activity in the
left DS had greater reduction of their response selections and
enactments, independent of new learning, than those with lesser
DS activation. No significant correlation arose in control
participants for our decision-making efficiency score and
BOLD signal in either DS or VS during Feedback Events minus
Rest. For OCD patients, our decision-making efficiency score did
not correlate with neural activity in DS or VS, during Stimulus-
Response Decision or Feedback Events minus Rest. Additionally,
all Bayes factors involving OCD beta values were <1, which
strongly supports the null hypothesis that no correlation exists.
Striatum and Learning From Feedback
Learning Slope was correlated with beta values from each of the
VS and DS ROIs, separately for controls and OCD patients.
Looking at the control data, a significant, positive correlation
occurred between Slope of learning and beta values extracted
from the left VS ROI (r = 0.542, t = 1.93, p = 0.037, uncorrected
for multiple comparisons; Figure 5B) for the Feedback Event minus
Rest contrast. No significant or trending correlations were present in
the control participants' data relating Learning Slope and BOLD
signal during Stimulus-response Decision Events minus Rest. For
OCD patients, Learning Slope, our measure of learning efficiency,
did not correlate with neural activity during either Feedback or
Stimulus-Response Decision Events minus Rest. Additionally, all
Bayes factors involving OCD beta values were <1, which strongly
supports the null hypothesis that no correlation exists.

DISCUSSION

Overview of Findings
Cognitive functions mediated by DS and VS were investigated in
OCD. Replicating our previous studies, we found that DS BOLD
signal correlated with stimulus-specific response selection and
enactment, and not with learning from feedback (14, 19, 43).
Patients with OCD evidenced less efficient decision-making
relative to healthy controls, even when controlling for new
feedback-based learning and baseline individual differences in
RT, and though both groups ultimately achieved similar levels of
accuracy at the end of five blocks of stimulus-response learning.
Though healthy age-matched controls made decisions more
quickly in Block 5 relative to Block 4, OCD patients did not
show this reduction in decision-making RT. Correspondingly,
OCD patients had lower DS activation during stimulus-response
decisions relative to controls. Finally, though control participants
with higher DS activation during Stimulus-Response Decision
Events evidenced greater decision efficiency (i.e., higher Final
Block RT Change Scores), there was no correlation between level
of DS activation and decision efficiency in OCD patients.

We also replicated our observation that VS BOLD signal
correlated with stimulus-response learning from feedback (14, 19,
43). Patients with OCD learned stimulus-response associations less
efficiently than healthy controls, demonstrating a shallower Slope
TABLE 3 | Significant brain activations in contrasts of interest collapsed across
Group (OCD and control) reported in MNI space.

Contrast Anatomical Area Cluster Size t pFWE x, y, z

SR minus
FB

Left Dorsal
Putamen

442 4.90 0.004 −24, −1, 8

Right Angular
Gyrus

342 5.70 <0.001 54, −43, 23

Right Central
Opercular Cortex

157 4.90 0.019 42, −1, 17

Left Cerebral
White Matter

14 4.37 0.035 −27, −22, 32

FB minus
SR

Right Ventral
Caudate

10 4.15 0.079 9, 5, −2

Left Thalamus 192 7.53 <0.001 −21, −22, 5
Left Insula 94 6.22 <0.001 −33, 23, 2
Right Insula 71 5.71 <0.001 33, 23, −4
Cluster size is reported in voxels. Coordinates are reported in MNI space. Striatal regions
are presented first and highlighted in each contrast. N.B. SR, Stimulus-Response Decision
Events; FB, Feedback Events.
TABLE 4 | Significant brain activations in patients with OCD versus healthy
controls in contrasts of interest reported in MNI space.

Contrast Anatomical Area Cluster
Size

t pFWE x, y, z

SR Events
Control
minus OCD

Right Dorsal
Caudate

21 5.32 0.001 15, 2, 14

Left Insular Cortex 48 6.33 <0.001 −30, 26, 5
Right Insular Cortex 19 5.26 0.001 33, 26, 2

OCD minus
control

No suprathreshold
activations

FB Events
Control
minus OCD

Right Ventral
Putamen

28 5.61 <0.001 30, 5, −1

Left Ventral
Putamen

** 5.05 0.004 −27, 2, −1

Left Dorsal
Putamen

113 5.67 <0.001 −27, −1, 11

Left Lateral Occipital
Cortex

56 5.81 <0.001 −42, −70, −4

OCD minus
control

No suprathreshold
activations
Cluster size is reported in voxels. Coordinates are reported in MNI space. Striatal regions
are presented first and highlighted in each contrast. **Cluster size unobtainable as peak
coordinates are within a larger cluster. N.B. SR, Stimulus-Response Decision Events;
FB, Feedback Events.
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of Learning. In keeping with this, patients with OCD had lower VS
BOLD signal corresponding with Feedback Events than healthy
age-matched controls. Finally, though control participants with higher
VS activation during Feedback Events relative to Rest learned stimulus-
response associationsmore efficiently, there was no correlation between
VS activation and speed of acquiring stimulus-response associations
through feedback in patients with OCD.

In summary, OCD patients made decisions less efficiently and
had reduced DS activation, as well as learned stimulus-response
associations more slowly and evidenced lower VS BOLD signal than
Frontiers in Psychiatry | www.frontiersin.org 9
healthy controls. These results suggest that cognitive impairment in
OCD could be mediated by striatal dysfunction as discussed further
below and related to the broader literature in OCD.
Striatum in OCD
Functional changes within the striatum are suspected to have a role
in cognitive dysfunction and symptoms of OCD (31, 32, 57). We
directly investigated these notions with a methodology that
distinguishes DS versus VS functions coupled with fMRI in OCD.
FIGURE 4 | Significant activations in contrasts of interest comparing healthy controls and patients with OCD. Activation maps are presented at a threshold of
p < 0.001 uncorrected for multiple comparisons to allow for visualization of activation in all contrasts. Areas in grey and red (0) reflect regions of the brain with little
activation and areas in yellow reflect maximal activation (1). (A) BOLD signal for healthy control minus OCD patients for Stimulus-Response Decision Events minus
Rest. Significant activity occurred in the bilateral dorsal caudate nuclei (peak coordinates: 15, 2, 14; t = 5.32, p = 0.001 FWE, and peak coordinates: −12, −1, 8;
t = 4.64, p = 0.019 FWE). (B) BOLD signal for OCD patients minus healthy controls for Stimulus-Response Decision Events minus Rest. No significant activity arose
in the striatum. (C) BOLD signal for healthy controls minus OCD patients for Feedback Events minus Rest. Significant activity arose in bilateral ventral putamina (peak
coordinates: 30, 5, −1; t = 5.61, p < 0.001 FWE, and peak coordinates: −27, 2, −1; t = 5.05, p = 0.004 FWE), as well as left dorsal putamen (peak coordinates:
−27, −1, 11; t = 5.67, p < 0.001 FWE). (D) BOLD signal for OCD patients minus healthy controls for Feedback Events minus Rest. No significant activity arose in the
striatum. N.B. SR, Stimulus-Response Decision Events; FB, Feedback Events in the figure.
FIGURE 5 | Correlation between behavioral indices of decision-making and learning for control participants and beta values in striatal ROIs. (A) Correlation
between Final Block RT Change and beta values in left DS ROI for Stimulus-Response Decision Events minus Rest in healthy controls was negative and significant
(r = −0.552, t = 1.99, p = 0.033). (B) Correlation between Slope of Learning and beta values in left VS ROI for Feedback Events minus Rest in healthy controls was
positive and significant (r = 0.542, t = 1.93, p = 0.037). No other correlations for healthy controls and no correlations between beta values extracted from striatal
ROIs and behavioral measures for OCD patients were significant.
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DS has been shown convincingly to mediate decision-making,
specifically promoting cognitive flexibility, selecting correct
responses even when this requires resisting more habitual
responding (42, 58–65). In line with these postulated functions
of DS and a number of previous studies (31, 32, 42), patients with
OCD in our study demonstrated less efficient decision-making
and corresponding DS hypoactivity. Patients with OCD have
been shown to have diminished DS function in tasks examining
cognitive flexibility (32, 66), response inhibition (32, 67), and
generally when making decisions in ambiguous contexts, such as
in the Iowa Gambling Task [IGT; (68–70)]. In the IGT, the object
is to win as much money as possible by selecting cards from
various decks. Some decks of cards are associated with high
winnings but also high losses and are disadvantageous in the long
run (i.e., “bad decks”), whereas other decks yield more modest
winnings and losses but are more advantageous (i.e., “good
decks”) over time. Participants are not informed of the
distribution of winnings in each of the decks and must figure
out which decks are more advantageous through trial and error.
Heathy controls typically initially sample each of the decks but
will quickly discover which decks are “good” and will continue to
choose them. Patients with OCD, on the other hand, have been
shown, repeatedly, to persevere with the “bad decks” and win less
money overall (68, 69, 71–73). According to previous studies,
this dysfunctional decision-making is driven by the prospect of
immediate, potentially high rewards and patients with OCD are
insensitive to the future consequences of high losses (68).

Nakao et al. (42) investigated decision-making in OCD using
Stroop facilitation and interference. In the color-word Stroop
task, color words (e.g., RED, BLUE, GREEN) are presented in
font colors that are either congruent (e.g., the word RED appears
in red font) or incongruent (e.g., the word RED appears in green
font) with the color word. Word reading is more habitual than
color naming, leading to faster color naming in the congruent
condition (i.e., Stroop facilitation) but slower color naming in the
incongruent condition (i.e., Stroop interference) relative to
naming the color of a neutral letter string. Patients with OCD
exhibited greater Stroop interference and reduced DS BOLD
signal than healthy controls, consistent with inefficiency in
selecting accurate responses and inhibiting incorrect responses,
especially when the incorrect response is more practiced and
habitual. DS dysfunction and corresponding cognitive
inflexibility could lead to the inability to choose naturally
rewarding behaviors over compulsive actions (66, 74–76),
perpetuating the illness.

Additionally, decision-making deficits seen in OCD can be
related to pathological doubt, a common phenomenon seen in
OCD. Studies have shown that patients with OCD often
experience uncertainty when making decisions due to a lack of
confidence in their own perception, attention, and memory (77–
79). In decision-making tasks, this can manifest as longer
response times compared to healthy controls (77).

VS has been shown to mediate association learning, reward
processing, as well as motivation (17, 37, 48–50, 80–82). In the
current study, stimulus-response learning was impaired in
patients with OCD related to decreased task-relevant VS
Frontiers in Psychiatry | www.frontiersin.org 10
activity during Feedback Learning Events. Our results are
consistent with other studies that have shown diminished
reversal learning (37) and reward learning (38) and reduced
VS activation in OCD patients. In our study, task-relevant VS
hypoactivity during Feedback Events could be related to baseline
hyperactivity in VS. This pattern is supported by the larger
literature as well, with higher VS metabolism at rest (32, 83), and
in response to symptom-provoking stimuli measured with
positron emission tomography (84) in OCD patients relative to
controls, despite reduced VS activation during VS-mediated
functions such as reward anticipation (57), reward processing,
and learning (8, 31, 32, 57). Impairments in striatal-mediated
learning has been purported as a significant contributor to the
neurological foundations of obsessions and compulsions in OCD
patients (37, 75). In a number of studies, in fact, obsessive-
compulsive symptoms have been linked to hyperactivity in the
VS at baseline (30–36, 57).

A proposed model of OCD suggests that obsessions and
compulsions arise due to disproportion between activity levels
in VS and DS (57, 85). Baseline VS hyperactivity, presumably
related to obsessive thinking and hypervigilance regarding
obsession-related stimuli, reduces the impact of VS signals
related to appropriate and natural rewards, feedback/outcomes,
and motives. The latter leads to reduced capacity for learning
appropriate associations and responses (30–36, 57). In essence,
the reward system, of which the VS is central, is dysfunctional in
OCD patients to regard anxiety-reduction following performance
of compulsions as abnormally more rewarding than natural
rewards and stimuli [i.e., food, sex; (32, 37, 57)]. Concurrently,
hypoactivity in DS results in deficits in cognitive flexibility and
decision-making, leading to habitual responses in the form of
compulsive behaviors (74–76). Together, these striatal changes
presumably interfere with learning of adaptive responses through
goal-directed behaviors, and cause impairment in switching away
from obsessive thoughts and in inhibiting maladaptive
compulsive, habitual behaviors (32, 66, 67, 74–76). Our results
are entirely supportive of these models of OCD.

The study is limited by its relatively small sample size (nOCD =
14; nctrl = 16), however between group differences, corrected for
multiple comparisons using familywise error correction, were
demonstrated increasing confidence in the results. A secondary
limitation with respect to the small sample size of OCD patients
in particular is the inclusion of patients with differing severities
of OCD and on different medication regimes which could reduce
observed power. The OCD sample had YBOCS scores ranging
from 8 to 26 which are all considered clinical OCD (55, 56), mild
and severe, respectively. Including a more homogenous sample
with a smaller variability of YBOCS scores and medications
could increase the between group differences, however, the aim
of the study was to compare OCD in general to healthy controls
and it is expected that all patients diagnosed clinically with OCD
would exhibit some level of striatal dysfunction. Additionally,
medication was not controlled and half of the patients with OCD
were on pharmacotherapy to treat their OCD including SSRIs,
benzodiazepine or both, and the other half were on no
medication to treat their OCD. Given the small numbers of
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those on and off medication and the varying classes of
medication, we were unable to conduct any contrasts between
these groups to investigate any effects of medication on these
cognitive functions. Lastly, given the size of the sample, it was
impossible to compare subtypes within the OCD group (i.e.,
contamination, hoarding, ordering, checking, etc.) as differences
in neuropathophysiology of each subtype have been reported (4).
Further research with a larger sample is necessary to examine the
role of the striatum on OCD subtype.
CONCLUSIONS

This study provides strong support for cognitive deficits in DS-
mediated decision-making as well as in VS-mediated learning
that arise in patients with OCD. Future investigations are needed
to investigate the striatal basis for cognitive deficits as well as in
inducing and sustaining symptoms of OCD.
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